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Abstract: This is the final technical report on the Adaptive and Reflective Middleware
Systems (ARMS) Phase HI work by a team led by Telcordia. Our focus in the ARMS
program is in the development of an adaptive and reflective network Quality of Service
(QoS) infrastructure for the Total Ship Computing Environment (TSCE) of next
generation surface ships. Our technology uses a Bandwidth Broker to provide admission
control, and leverages Differentiated Services and Class of Service functionality of high-
end routers and switches for enforcement. In the Phase II ARMS program, we built upon
our Phase I network QoS technology to provide continued assurance of network QoS for
mission-critical tasks in the presence of single-mode and certain catastrophic faults such
as losing an entire data center and improve the timely adaptation to network
performance with probes and instrumentation for delay. Our work also raises the level of
abstraction for configuration and deployment of distributed real-time embedded systems,
specifically for achieving end-to-end QoS in such systems, using Model-Driven
Development (MDD) tools.

1. Introduction
This is the final technical report on the Adaptive and Reflective Middleware Systems
(ARMS) Phase II work by the Telcordia team. The Telcordia team consists of Telcordia
Technologies as prime contractor and Vanderbilt University and Prism Technologies
(PrismTech) as subcontractors. The work was performed from April 1, 2005 to December
31, 2006. The report discusses architecture, implementation and validation aspects of the
technology developed during ARMS Phase II. The report also includes a discussion of
deliverables and key results.

This Phase II work built on Telcordia Phase I work on Quality of Service (QoS)
assurance for layer-3/layer-2 networks using the Multi-Layer Resource Management
(MLRM) architecture framework [1]. The MLRM framework is a major output from
Phase I of the ARMS program and resulted from the combined efforts of the program
participants [1]. Its goal is to demonstrate that adaptive and reflective middleware can
make substantial improvement in the effectiveness of the Total Ship Computing
Environment (TSCE) used in the DDG 1000 program.



In Phase I, we developed and demonstrated the basic building blocks of an adaptive and
reflective network QoS technology. Our adaptive QoS technology uses a Bandwidth
Broker to provide admission control and enforcement using the Differentiated Services
(DiffServ) and Class of Service (CoS) functionality of high-end COTS routers and
switches. The Bandwidth Broker technology detects and adapts to changes in mission
requirements, work load, and configuration. It uses discovery algorithms to maintain a
current view of resource availability and traffic probes to detect the changing needs of
high-priority flows. In the Phase II ARMS program, we built upon this network QoS
technology to

"* provide continued assurance of network QoS for mission-critical tasks in the
presence of single-mode and certain catastrophic faults such as losing an entire data
center or a pool of resources;

"* improve the timely adaptation to network performance with probes and
instrumentation for delay, jitter, and available bandwidth; and

"* increase the flexibility of our delay guarantees by incorporating deadline support in
flow admission decisions based on sound mathematical calculations.

Moreover, our proposed network QoS solution also addressed policy changes in resource
management in response to operational mode changes (e.g., normal to alert mode),
typical of battlesphere environments, specifically those affecting network QoS globally.
We also raised the level of abstraction for configuration, deployment, and testing of
distributed real-time embedded systems, specifically for achieving end-to-end QoS in
such systems, using Model-Driven Development (MDD) tools.

The effectiveness of our technology, specifically for recovery from network faults,
operating in conjunction with the technologies of other program participants was
validated through an ARMS Phase II gate metric, known as Gate 3.

We next describe in detail our technical approach.

2. Technical Approach

2.1. Network QoS Components
Figure 1 illustrates our overall network architecture. In Figure 1 R/S, ASM, IA and PM
stand for Router/Switch, Application String Manager, Infrastructure Allocator and Pool
Manager, respectively. ASM, IA and PM are higher-level MLRM components that are
users of the network quality of service functionality provided by the Bandwidth Broker.
The major logical components of the network QoS management architecture are:

* Bandwidth Broker
* Flow Provisioner
* Performance Monitor
* Fault Monitor
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Figure 1: Network QoS Architecture

We now describe these four components:

Bandwidth Broker: Higher level MLRM components use the basic functions provided
by the Bandwidth Broker to allocate and schedule mission tasks spanning the network.
These functions include:

"* Flow Admission Functions: Reserve, commit, modify, and delete flows (in
support of distributed scheduling); and

"* Queries: Retrieve bandwidth availability for different classes between pairs of
pools and subnets (in support of allocation of processes to processors).

See [1], [3] for more details on the Bandwidth Broker.

The Bandwidth Broker solution leverages DiffServ in layer-3 and CoS mechanisms in
layer-2 network elements, in a transparent manner, to provide end-to-end QoS guarantees
in a hybrid, heterogeneous environment. CoS mechanisms provide functionality at layer 2
similar to what DiffServ mechanisms provide at layer 3. They both provide aggregated
traffic treatment in the core of the network and per-flow treatment at the edge of the
network. Typical network implementations of QoS using DiffServ/CoS perform the
following steps:

1. At the ingress of the network, traffic is classified and marked as belonging to a
particular class and may be policed or shaped to ensure that it does not exceed a
certain rate or deviate from a certain profile.

2. In the network core, traffic is placed into different classes based on the marking of
individual packets. Each class is provided treatment differentiated from all other
classes but consistent for all packets within the class. This includes scheduling
mechanisms that assign weights or priorities to different traffic classes (such as
weighted fair queuing or priority queuing, respectively), and buffer management
techniques that include assigning relative buffer sizes for different classes and
packet-discard algorithms such as Random Early Detection (RED) and Weighed
Random Early Detection (WRED).
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DiffServ/CoS features by themselves are insufficient to guarantee end-to-end network
QoS, because the traffic presented to the network must be made to match the network
capacity. The main function of the Bandwidth Broker then is adaptive and reflective
admission control that ensures there are adequate network resources to match the needs
of admitted flows. To do its job, the admission control entity needs to be aware of the
path being traversed by each flow, track how much bandwidth is being committed on
each link for each traffic class, and estimate whether the traffic demands of new flows
can be accommodated. As such, path discovery in combined layer-2 and layer-3 network
was a major area of focus in Phase I.

In our approach, the Bandwidth Broker is also responsible for overall coordination. For
instance, the Bandwidth Broker is responsible for assigning the appropriate traffic class
to each flow, and coordinating the provisioning of complex parameters for policing,
marking, scheduling, and buffer management, such that contracted flows obtain the
promised end-to-end QoS.

Support for Delay Bounds: In Phase I, the Bandwidth Broker admission decision for a
flow was based on whether or not there was enough bandwidth on each link traversed by
the flow. Toward the end of Phase I, we developed the computational techniques to
provide both deterministic and statistical delay bound guarantees. These guarantees are
based on relatively expensive computations of occupancy or utilization bounds for
various classes of traffic, performed only at the time of network
configuration/reconfiguration, and relatively inexpensive checking for a violation of these
bounds at the time of admission of a new flow. (See [4] for details.) As alluded to earlier,
delay guarantees raise the level of abstraction of the Bandwidth Broker as seen by the
higher layer MLRM components and enable these components to provide better end-to-
end mission guarantees. In Phase II, we implemented these computational techniques to
provide both deterministic and statistical delay bound guarantees as part of the
Bandwidth Broker admission control process.

In Phase II, we also developed computational techniques for increasing the abstraction of
the Bandwidth Broker in an area, known as bulk scheduling [5]. This involves supporting
admission requests that specify an aggregate number of bytes ("bulk") to be delivered
and a deadline for the delivery of the full aggregate. This research explored some of the
issues that arise in trying to get a network to ensure that the transfer of a given bulk be
completed within a given time. Mainly, the task is to identify the policing-parameter
values necessary to support a TCP session, but the appropriate values are affected by
certain details of the implementation, such as the nature of the assurance being sought,
and whether traffic shaping is being done in addition to policing. In the case of shaping,
the required buffer space also needs to be determined. This work identified the
quantitative implications of these details in a variety of cases, including the implications
for the occupancy at which the network can be run.

Non-Blocking Admission Control: There was one major concern expressed regarding the
Bandwidth Broker during our technology transition effort. For certain classes of high
priority traffic or certain users with low delay tolerance, the delay associated with
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admission control may be intolerable. Our solution, non-blocking admission control,
alleviates this problem by allowing high priority traffic to begin using network resources
while the admission control process runs its course. This approach allows us to manage
resources in the network during periods of scarcity while minimizing the impact on
applications during periods when no scarcity exists. In the transient period between the
flow initiator's admission control request and the admission control response from the
Bandwidth Broker, the network may be over-subscribed. Our solution encompasses
several strategies that minimize the impact to the admitted flows in the network during
this transient period. These strategies include pre-allocating bandwidth for use during
transient periods and using best effort for transient periods for (non-blocking) requests.

Flow Provisioner: The Flow Provisioner translates technology-independent
configuration directives generated by the Bandwidth Broker into vendor-specific router
and switch commands to classify, mark, and police packets belonging to a flow. In Phase
I, we implemented Flow Provisioners for layer-3 IOS CISCO (e.g., CISCO 3600 routers),
layer-2/3 Catalyst switches (e.g., CISCO 6500 switches) and layer-2/3 IOS switches (e.g.,
CISCO 4507 switches) to demonstrate the viability of this QoS architecture in a variety
of network topologies and equipment. In Phase II, our work focused on needed
extensions to support a metric known as Gate 1 or the "Do No Harm" metric. This metric
dealt with how well MLRM technologies supported reverting back to static modes. The
Flow Provisioner was extended to support provisioning operations that revert the network
QoS configuration settings to their original state (i.e., their state prior to any Bandwidth
Broker admission control decisions).

Performance Monitor: In Phase I, our monitoring was limited to detection of overflow
of traffic for an admitted flow. This feature is useful in detecting mission-critical tasks
that require additional bandwidth. However, much needs to be done here for our
infrastructure to be continuously adaptive and reflective. We need features to monitor
how well critical flows are meeting their timing constraints, specifically their end-to-end-
latency and jitter metrics. Salient features of the Performance Monitor we have
implemented are:

"* Delay measurements can be collected for specific traffic flows or for all flows
between a pair of hosts belonging to a specific traffic class. Averaging window
sizes can be specified. The Performance Monitor interface supports both
synchronous requests to query current delay and asynchronous events for
violations of thresholds or to provide periodic updates on delay.

"* The analysis and management of performance data is separated from probes for
raw data collection.

"* Probe job configurations are stored in a persistent medium so as to recover the job
data in case of probe platform or probe host failures.

"* In setting up a probe job, we have options to vary packet size, gap/time between
packets, the number of packets in a packet train and periodicity.

"* The probe job packet train generation is done at the (Linux) kernel level to control
or minimize the time-related vagaries in generating packets.
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* Clocks are synchronized between two measurement (Linux) hosts with GPS using
a non-network interface between the hosts to achieve delay measurement
accuracy in the micro-second range.

Fault Monitor: A key feature of a resource management system in a dynamic battlespace
environment is the ability to detect and react to network faults. We illustrate the problem
we are trying to address using the network shown in Figure 2.

Figure 2: Impact of a Fault on QoS

If the link between switches A and B goes down, then a flow Y between A and B may be
routed through switch C (shown in dashed lines). Similarly, a flow Z between E and A
that originally used the links EB and BA may now use links ED and DA (shown in dotted
lines). However, links AC, CB, ED, and DA may now be oversubscribed causing
concerns on QoS guarantees for Y and Z as well as for the flows that had been using
these links prior to the occurrence of the fault.

The goal of the Fault Monitor is not to perform a root cause analysis or enable fixing the
fault, but to do QoS restoration. If the QoS of a previously admitted flow cannot be
guaranteed, the Fault Monitor will raise a fault exception event to the Bandwidth Broker.
The Bandwidth Broker, in turn, will raise a higher-level event to other MLRM
components, such as ASM and PM. The three functional aspects of the Fault Monitor
components are described next.

"• Fault Detection: SNMP traps are used to detect link failures (and links coming
back into service). A switch failure is detected when SNMP trap notifications for
all links to the switch are received by the adjacent switches.

"* Impact Analysis: For each admitted flow the impact analysis involves determining
whether the flow has changed its path using the path discovery algorithms. If a
path for a flow has changed, that flow has been impacted by the failure and is a
candidate for re-admission.

"* QoS Restoration: Our design is capable of supporting different algorithms
satisfying different utility functions or optimality criteria. The first step,
regardless of the algorithm used, is to temporarily remove affected flows. In the
current implementation, the affected flows are then readmitted one at a time, from
the highest priority to the lowest priority and within the same priority with less
bandwidth first. Our goal is to readmit the maximum number of higher priority
flows whose paths have changed. We may substitute an algorithm that admits
more flows. We can also employ a preemption algorithm. For instance, if the
admission of a flow would lead to capacity violations on a link, then the process
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preempts a lower priority flow that uses this link. The preempted flow then
becomes a candidate for readmission.

The Fault Monitor also tracks the paths and the resources used when the fault disappears
and restores guarantees to the original level. We carry out the entire process of impact
analysis and restoration, as described above, when the fault condition disappears. See [8]
for more details on the Fault Monitor component.

Software Fault Tolerance: A technology area of focus is recovery of the various network
QoS components from a single process or processor failure. The recovery of the
Bandwidth Broker and Flow Provisioner is of particular concern, as they are responsible
for changing the state of the network (by provisioning various network elements for
desired QoS behavior) and they maintain a view of the network. The Fault Monitor and
Performance Monitor are feedback mechanisms, and, as such, recovery of these
components is less of a concern.

The Bandwidth Broker is a "database" application. The relational DBMS MySQL is the
persistence mechanism used to recover from process and processor failures. The database
is used to maintain the current commitment of network resources on a continual basis.
The persistent information includes network inventory, currently admitted flows, paths
taken by flows between various end-points of the network, configuration details such as
access list numbers used for each flow, and lastly DSCP value allotment for each flow.
Apart from this network data, for each host that uses Bandwidth Broker services, the
Bandwidth Broker also maintains a record that indicates where the host is connected to
the network and to which gateway IP address its traffic is directed by default. Within the
Bandwidth Broker code there are two transactional scopes. When a request to add or
delete a flow is processed, the first transactional scope essentially consists of database
updates to track the committed bandwidth correctly on each link traversed by the flow. At
the end of this commit process, the record corresponding to the flow request is updated
with a "provisioning in progress" status indicator. The second transaction block
surrounds a call to the Flow Provisioner to provision the network element. At the end of
this transaction scope the status of the flow record is changed from "provisioning in
progress" to "completed."

The Bandwidth Broker, Flow Provisioner and the MySQL database are all replicated to
improve recovery time. However, a request is served by only one instance of these
components at any time. This is known as the warm-passive approach to replication.
With the warm-passive approach, there is no replica start up time involved, and,
moreover, the computations involved can be non-deterministic, i.e., the technique is more
widely applicable than the active replication approach. If the Bandwidth Broker fails
during the first transactional scope, the CORBA middleware will raise an exception to the
client and the client will retry the entire request using the second instance. To gracefully
recover from the failure during the second transactional scope, the second instance of the
Bandwidth Broker will start honoring the request by re-executing the instructions in the
second transactional scope. We employ a modified group Communication and CORBA
fault tolerance middleware mechanism that provides the needed transparency in binding
an MLRM client to the right instance of the Bandwidth Broker during recovery. We have
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implemented replication of the database using the MySQL Cluster technology. (See
http://dev.mysql.com/doc/refmian/4.1/en/ndbcluster.html). The MySQL Cluster
technology supports in-memory databases and the various replicas in a cluster are
updated synchronously, i.e., the replicated instances are always consistent at the
completion of a transaction.

The Flow Provisioner is designed as a stateless component. A failure in an instance of the
Flow Provisioner is handled by the Bandwidth Broker reissuing commands for all "in
progress" requests to routers/switches (using the secondary instance of the Flow
Provisioner). However, instructions to routers are not always idempotent. When an
instruction to a router is not idempotent, a "delete/undo" operation needs to precede a
non-idempotent provisioning instruction.

2.2. Support for Mission Mode Changes
In addition to adapting to faults and overload, the Bandwidth Broker supports
dynamically changing modes. A mode is a major operational situation such as normal,
alert, or battle mode in a military environment. Our work in support of mode changes
deals with global policy changes affecting the entire network, including changes in the
fraction of the bandwidth allocated to various traffic classes. The bandwidth policy
change implementation involves sending reconfiguration instructions to every switch to
change its QoS parameters such as queue size, number of scheduling slots allocated, and
packet drop rules for every traffic class. Such a policy change often results in the
reduction of the bandwidth allocated to one or more traffic classes so that QoS for
various flows already admitted in these classes might no longer be guaranteed.
Identifying and readmitting the affected flows is similar in spirit to the impact analysis
and restoration of QoS in response to network faults, but the details are somewhat
different. A flow is affected in this case if there is a link in its path for which the total
bandwidth allocated to the link exceeds the link capacity of the flow's class and/or the
current occupancy value of the flow's class exceeds its corresponding threshold for the
class. For the flows affected, the primary sorting field is priority, from the lowest priority
to highest priority, and within each priority we sort on the bandwidth size in descending
order. We delete the flows in the affected list starting from the one with the lowest
priority and highest bandwidth requirement until there is no link in the path used by the
flow such that the total bandwidth allocated for the link (for that class) exceeds the link
capacity (for that class) and/or the current occupancy value exceeds its corresponding
threshold. The utility function used here minimizes the number of higher priority flows
that have the potential of being denied their QoS. When a flow is deleted, the bandwidth
used or the current occupancy value in all the links used by the flow needs to be adjusted
accordingly.

2.3. Expanding the Scope of Applicability
To prepare our QoS technology for transition to several DoD programs, we expanded its
scope of applicability. Two areas were of focus: Support for IPv6 and Operation in a
Multi-Level Security environment.

Support for IPv6: Our goals here were to:
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"* Make our network QoS management tools run in and for an IPv6 environment
"* Leverage the Flow Label field of IPv6 for enhanced network QoS differentiation

and control
"* Provide tools and techniques to transition IPv4-based middleware/network

applications to run in an IPv6 environment

To make our software run in an IPv6 environment, our investigation has concluded that
changes to our software are required to:

"* Reflect the fact that OSPF Link-State Advertisements have changed in IPv6;
"* Deal with multiple addresses per interface; and
"* Address IP address length and subnet to host relationships in our database tables.

The IPv6 Flow Label field helps with tracking of individual end-to-end flows using a 20-
bit field. IPv4 flow classifiers are based on the 5-tuple of the source and destination
addresses, ports, and the transport protocol type. However, some of these fields may be
unavailable due to either fragmentation or encryption, and locating them past a chain of
IPv6 option headers may be inefficient. The usage of the Flow Label along with the
source and destination address fields enables efficient IPv6 flow classification, where
only the IPv6 main header fields in fixed positions are used. Many more flows can be
distinguished and tracked using (source address, destination address, Flow Label ID) than
using (source address, destination address, DSCP). Moreover, the requests to the
Bandwidth Broker can be simplified by allocating Flow Label IDs to applications. For
instance, video applications may have a different set of Flow Label ID's from audio
applications. So, in the request to the Bandwidth Broker, certain QoS parameters (type of
service, rate, burst size) for the sessions need not be specified with the use of Flow Label
IDs.

In the area of tools and techniques for transitioning applications and middleware to IPv6,
the toolsets required can be classified into three classes:

"* Tools for Discovery of IP-centric features of code: Allows understanding of the
patterns of IP usage. It is particularly important to discover whether IP data is
used at the application/middleware level (e.g. ftp)

"* Tools for remediation of code: Enables isolating the areas where such patterns
occur and replacing the IPv4-specific code with IPv6-capable code where needed

"* Tools for testing of remediated code: Ensures that the previous two steps,
discovery of IP-centric feature related code and their remediation, worked
correctly.

Bandwidth Architecture for Multi-Level Security: The purpose of this work is to 'bake
security into' our Bandwidth Broker based network QoS. The architecture we have
developed minimizes the need for trusted interfaces as much as possible. Several
scenarios of bandwidth reservation admission requests and bandwidth reservation cancel
requests have been worked out to ensure correct communication in each case. See [6].
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2.4. Integration Research Issues
The network QoS solution we have proposed is not a stand-alone solution; rather it is part
of an end-to-end MLRM solution. As such, we needed to integrate and test our solutions
with those of others in the ARMS programs using the QoS-enabled component
middleware. A research agenda here was to achieve a measure of automation in the
deployment, configuration, testing and integration of application components using
model-driven development (MDD) technology and using the MLRM technology. We
worked very closely with Vanderbilt University who led the research effort. Although the
QoS-enabled component middleware they previously developed offers many desirable
features, until recently it has lacked the ability to simplify and coordinate application-
level services to leverage advances in end-to-end network QoS management.

Working with Vanderbilt University, we developed a declarative framework called
NetQoPE that integrates modeling and provisioning of network QoS with QoS-enabled
component middleware for enterprise DRE systems. NetQoPE enhances their prior work
that predominantly considered only host resources when provisioning end-system QoS.
The enhanced system integrates with the Bandwidth Broker to provide network QoS in
the QoS-enabled middleware. NetQoPE's modeling capabilities now allow users to (1)
specify application QoS requirements in terms of network resource utilization needs, (2)
generate deployment plans that account for the network resources, and (3) provision
network and host elements to enable and enforce the network QoS decisions. See [7] for
details.

2.5. Bandwidth Broker and Real-Time
Our network QoS components are Java/CORBA server applications; they depend on a
variety of third party middleware (JacORB, MySQL, log4j, OpenCCM). We conducted
some preliminary experiments with the Bandwidth Broker with an eye toward making it
'more real time' without significant code changes and toward applying the lessons
learned to other Java server applications that need to run in a mission critical environment
[9]. Our experiments demonstrate that there is there no significant variance in the service
time for requests to the Bandwidth Broker. The occasional spikes in the elapsed time
could be due to the operating system (OS), in which case a RT OS could reduce them.
They could also be due to a service (MySQL) used by the Bandwidth Broker.
Unfortunately, we were not able to instrument in such a way that we could determine the
culprit. It does not appear that a real-time garbage collector or real-time ORB would have
helped in our case. Tools to simplify the analysis process, however, would help
considerably. Overall, the experiment was successful in showing that the Bandwidth
Broker already has fairly good soft real time characteristics which could be improved by
some redesign. In addition, our analysis techniques show promise for other, similar Java
applications.

3. Deliverables
We have successfully met the various deliverable requirements throughout the
performance period. Our main software/prototype deliverables this period are the
Performance Monitor and the Fault Monitor. Several enhancements were also made to
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the Bandwidth Broker and Flow Provisioner. The highlights of our software deliverables
are:

"* Network Performance Monitor to measure latency with delay accuracy in the
micro-second range

"* Network Fault Monitor to detect and restore network QoS in the case of single
faults and certain catastrophic faults, such as outage of a data center in a ship

"* Fault tolerant implementation of Bandwidth Broker and Flow Provisioner using
MySQL Cluster database technology (The MySQL cluster technology needs to be
enhanced to support recovery needs that are suitable for hostile military
environments that were considered in ARMS.)

"* Enhancements to the Bandwidth Broker to support mode changes affecting
resource management policies throughout the network

"* Enhancements to the Flow Provisioner to support "Do No Harm" metric
"• Enhancement to the Bandwidth Broker to support delay bound guarantees for

mission-critical traffic
"* Enhancements to the Bandwidth Broker to support non-blocking admission

control for short-duration mission-critical traffic
"* Integration of the network resource management into QoS-enabled middleware so

as to raise the level of abstraction and automation toward achieving end-to-end
QoS for CORBA Component Model (CCM)-based DRE systems

In addition, we have developed (and documented) a multi-level security architecture
for our network components that minimizes the amount of communications through
guards. We have also developed computational techniques in support of scheduling
bulk traffic that has a strict latency constraint through the network.

We produced several technical reports/papers during Phase II:
"* A Middleware-based Network QoS Provisioning Engine for Enterprise

Distributed Real-time and Embedded Systems [7]
"* Fast Recovery and QoS Assurance in the Presence of Network Faults [8]
"* QoS in the Presence of Multi-Level Security Network Architecture (Presentation),

[6]
"* Adaptive Network QoS in Layer-3/Layer-2 Networks as a Middleware Service for

Mission-Critical Applications [1]
"* Meeting Deadlines for Bulk Transfers [3]
"* Toward a 'More Real Time' Bandwidth Broker [9]

4. Experimentation and Validation

The goal of our main area of experimentation was to demonstrate that our network QoS
software can recover well under the limit set by the DDG 1000. There are two gate tests
under Gate 3, known as Gate 3A and 3B.

* Gate Test 3A was defined to exhibit that we could provide fault tolerance for the
ARMS MLRM that meets the DDG 1000 requirements for fault tolerance of their
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resource management system. Specifically, the requirement states that the
recovery from a single pool/data center failure should be within one second.

Gate Test 3B was defined to exhibit that we could make the ARMS MLRM recover from
faults beyond those required by DDG 1000, specifically that we could survive the failure
of two MLRM instances (the operational one and a partially recovered replacement) in
rapid succession. The metrics for Gate Test 3B ask (1) can MLRM recover from two
cascading pool failures and (2) within what time?

In the context of our network QoS components, only the Bandwidth Broker and Flow
Provisioner were of focus in this study as they are responsible for changing the state of
the network by provisioning various network elements for desired QoS behavior and as
they maintain a view of the network, as mentioned previously. The recovery time of
interest in the case of Gate 3A is the time taken by a client of the Bandwidth Broker (e.g.,
ASM) to switch from the primary instance of the Bandwidth Broker (and Flow
Provisioner) to the secondary instance of the Bandwidth Broker and get a response back
from the secondary instance when the failure occurs during the processing of the
transaction by the primary Bandwidth Broker. The primary and secondary Bandwidth
Broker instances (and their corresponding Flow Provisioner instances) were in different
datacenters or pools of resources. The result for five Gate Test 3A runs on Emulab
(www.emulab.net) is as given in Table 1.

Average recovery time (ms) 212.48
Minimum recovery time (ms) 150.10
Maximum recovery time (ms) 283.20
Standard Deviation (ms) 52.39

Table 1: Gate 3A Recovery Time

In the Gate 3B experiments, we injected the first fault to cause a primary data center
failure in the same manner as Gate Test 3A, and then injected the second fault (so as to
cause a failure in a secondary that is trying establish itself as the primary) in as close to
the worst case time as we could, i.e., after the system is far along in its recovery, but just
before it is done recovering so that the faults cannot be handled as two distinct failures.

In all the Gate 3B experiments, an MLRM client using the Bandwidth Broker was able to
recover from both failures. The result for five Gate Test 3B runs on Emulab, as given in
Table 2 below, indicates that the sub-second recovery from two cascading failures is
achievable.

Average recovery time (ms) 509.06
Minimum recovery time (mis) 414.90
Maximum recovery time (ins) 579.60
Standard Deviation (ms) 50.85

Table 2: Gate 35 Recovery Time

In Phase I, we conducted experiments to demonstrate that the Bandwidth Broker and
Flow Provisioner can perform effective dynamic resource management to increase
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mission capacity in Emulab. We repeated these experiments in a larger scale at the
Vanderbilt ISIS Lab to evaluate (1) the effectiveness of various traffic classes supported
by the Bandwidth Broker, specifically High Priority, High Reliability, Multi-Media, and
Best Effort, (2) admission control mechanisms that ensure there is enough capacity for
the flows that have been admitted with QoS guarantees, and (3) underlying network
element mechanisms that police a flow for compliance, i.e., that prevent a flow from
exceeding its allocated bandwidth amount. The results are summarized and discussed in
[7].

5. Results
This Phase II work built upon Telcordia Phase I work on QoS assurance for layer-3/layer-
2 networks using the Multi-Layer Resource Management (MLRM) architecture
framework. The MLRM framework was a major output from Phase I of the ARMS
program and resulted from the combined efforts of the program participants. The purpose
of the MLRM architecture is to push middleware technologies beyond current
commercial capabilities. The current capabilities are largely limited to fixed static
allocation of resources in support of predefined mission capabilities. Static allocations
limit the ability of a military application to adapt to conditions that vary from the original
system design. It is desirable for resource allocation to be performed dynamically and
modified in response to faults, to changes in mission requirements, or to workload
distributions that do not match the original mission-planning model.

In Phase I, we developed and demonstrated the basic building blocks of an adaptive and
reflective network QoS technology. In Phase II, we built upon this Phase I work. The
Bandwidth Broker technology now adapts to changes in mission requirements, work
load, and resource availability.

Moreover, our network QoS solution now addresses mode change policies, specifically
those affecting network QoS globally. A mode here is taken to mean a major operational
situation such as normal, alert, or battle mode. We also proposed a security enforcement
architecture that would minimize the amount of "talking down" communications through
guards among our network QoS components in a multi-level security environment. The
benefits of the proposed work compared to the current state-of-the-art and alternative
approaches include:

"* The work has led to adaptive and reflective network resource management
integrated into an overall adaptive and reflective resource management system for
the Total Ship Computing Environment which will enable more effective use of a
ship's computing resources in dynamically changing and possibly hostile
circumstances. Compared to the pre-existing static approach, this offers the potential
for more effective execution of the ship's mission. A major issue remaining for
effective technology transition is certification of such dynamic systems.

"* Our delay bounds calculations are set in a more generalized framework than what is
found in the literature. Our calculations support any number of priority classes and
within a priority class any number of weighted fair queuing classes. We support
both deterministic and statistical guarantees using this generalized framework.
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Deterministic guarantees are applicable to the highest priority tasks, and statistical
guarantees are more broadly applicable to all lower priority tasks. Our
implementation for delay support in the Bandwidth Broker in ARMS Phase II is
flexible and unique in the mix of guarantees it can provide -- deterministic delay
guarantees, statistical delay guarantees, and capacity (bandwidth-based admission
control) guarantees -- to various tasks.
Our solution provides an integrated QoS treatment for heterogeneous layer-2 and
layer-3 networks, can be centrally directed and policy-driven, and is more scalable
than another commonly used QoS technique. The two main technologies for
providing differentiated treatment of traffic are DiffServ/CoS and Integated Services
(IntServ). The Bandwidth Broker makes use of DiffServ/CoS. In IntServ, every
router makes the decision whether or not to admit a flow with a given QoS
requirement. Some drawbacks with conventional implementations of IntServ are
that (1) it requires per-flow state at each router, which can limit its scalability; (2) it
makes its admission decisions based on local information rather than some adaptive,
network-wide policy; and (3) it is applicable only to layer-3 IP networks.
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